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Chapter 1 Characters

1.1 Introduction
The characters on residue classes, both additive and multiplicative, play instrumental parts in analytic number theory.

Other characters such as the Hecke characters of a number field, or the characters of a finite field are also indispensable in
the modern theory. We shall introduce these in due course. However, to avoid redundancy we start here by giving basic
definitions in a general context of a finite abelian group. (Characters for non-abelian groups occur also, but more naturally
as Galois groups and are best seen from the automorphic perspective in analytic number theory).

Let G be a finite abelian group. A homomorphism χ : G → C⋆ is called a character of G. Therefore (in the
multiplicative notation) χ has the properties

χ (xy) = χ (x)χ (y) for all x, y ∈ G,

χ (1) = 1 and χ(x)m = 1, where m = |G| is the order of G, therefore χ (x) is a root of unity.
The characters of G form a group Ĝ with multiplication given by

(χ1χ2) (x) = χ1 (x)χ2 (x) for all x ∈ G.

Ĝ is called the dual group, its identity element is the trivial character

χ0 (x) = 1 for all x ∈ G.

Throughout, χ̄ denotes the complex conjugate, hence also the inverse. If G is cyclic of order m and g is a generator
of G, then every character of G is of type

χa (x) = e2πiay/m, if x = gy

for some fixed residue class a ( mod m). These are distinct characters, therefore Ĝ is also cyclic of order m, so Ĝ
is isomorphic to G. The isomorphism Ĝ ' G can be established for any finite abelian group by writing G as the direct
product of cyclic groups. There is a canonical isomorphism between G and ̂̂G given by x 7→ ̂̂x where

̂̂x (χ) = χ (x) for all χ ∈ Ĝ.

The raison d’être of these characters is found in the following orthogonality relations

∑
x∈G

χ (x) =

{
|G| if χ = χ0,

0 if χ 6= χ0,

∑
χ∈Ĝ

χ (x) =

{ ∣∣∣Ĝ∣∣∣ if x = 1,

0 if x 6= 1,

which allows us to detect the group identity element.
Suppose d divides the order of G. An element g ∈ G is said to have exponent d if gd is the identity. The order of g

is its smallest exponent. The characters of exponent d are exactly those which are trivial on the subgroup

Gd =
{
xd : x ∈ G

}
therefore they may be viewed as characters of the factor group G/Gd. The orthogonality relations become



1.2 Dirichlet characters

∑
χd=χ0

χ (y) =

{ [
G : Gd

]
if y ∈ Gd,

0 if y /∈ Gd.

This will allow us to detect the d-th powers of G.

1.2 Dirichlet characters
First we consider the characters on the additive group Z/mZ of residue classes modulo m . They are given by

ψa (n) = e
(an
m

)
where e (z) = e2πiz . This formula makes an additive character a function on Z , periodic of period m . The

orthogonality property becomes

∑
a( mod m)

e
(an
m

)
=

{
m if n ≡ 0 ( mod m) ,

0 otherwise.

We shall call ψa (n) = e (an/m) primitive if (a,m) = 1 . Adding all the additive primitive characters we obtain the
Ramanujan sum

S (n, 0;m) = cm (n) =

⋆∑
a( mod m)

e
(an
m

)
.

Recall that throughout this book
⋆∑

restricts the summation to ”primitive” elements, in the above case among
additive characters modulo m . One shows by Möbius inversion that

cm (n) =
∑

d|(m,n)

dµ
(m
d

)
(1.1)

Hence

cm (n) = µ

(
m

(m,n)

)
φ (m)

φ (m/ (m,n))
(1.2)

In particular,

cm (n) = µ (m) if (m,n) = 1.

In general,

|cm (n)| ≤ (m,n)

Next we consider characters on the multiplicative group of residue classes a ( mod m) with (a,m) = 1 ,

χ : (Z/mZ)⋆ → C

As with the additive characters, we wish to consider χ as a function on Z ; we do so by setting χ (n) = 0 whenever n
is not prime tom . This makes χ a Dirichlet character, a function on Z , periodic modulom and completely multiplicative.
The corresponding extension of the trivial character χ0 ( mod m) is called the principal character to modulus m . The
group (Z/mZ)⋆ and its dual have φ (m) elements. The orthogonality relations become
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1.3 Primitive characters

∑
a( mod m)

χ (a) =

{
φ (m) if χ = χ0,

0 otherwise,

∑
χ( mod m)

χ (a) =

{
φ (m) if a ≡ 1 ( mod m) ,

0 otherwise,

If m = m1m2 with (m1,m2) = 1 , then (Z/mZ)⋆ ' (Z/m1Z)⋆ × (Z/m2Z)⋆ , so every multiplicative character
χ ( mod m) is a product χ1χ2 of multiplicative characters χ1 ( mod m1) and χ2 ( mod m2) . The Dirichlet series
associated to Dirichlet characters are of paramount importance in analytic number theory. They are called Dirichlet
L -functions and denoted L (s, χ) , or L (χ, s) depending on emphasis:

L (s, χ) =
∑
n≥1

χ (n)n−s =
∏
p

(
1− χ (p) p−s

)−1
;

the series and the Euler product are absolutely convergent for Re (s) > 1 . As is well known, these functions can be
analytically continued to C . See Section 4.6 for a proof. Many other analytic properties, applications and generalizations
of Dirichlet L -functions will be considered throughout the book.

Note that by total multiplicativity,

1

L (s, χ)
=
∑
n≥1

µ (n)χ (n)n−s, −L
′

L
(s, χ) =

∑
n≥1

Λ (n)χ (n)n−s

for Re (s) > 1 .

1.3 Primitive characters
Associated to each character χ , in addition to its modulus m , is a natural number m⋆ , its conductor. The conductor

is the smallest divisor of m such that χ may be written as χ = χ0χ
⋆ where χ0 is the principal character to modulus m

and χ⋆ is a character to modulus m⋆ . For some characters the conductor is equal to the modulus. Such characters are
called primitive. In the above factorization χ⋆ is a primitive character uniquely determined by χ . We shall say that χ is
induced by χ⋆ or that χ⋆ induces χ . We have

χ (a) = χ⋆ (a) if (a,m) = 1.

The number of primitive characters to modulus m is given by

φ⋆ (m) = m
∏
p∥m

(
1− 2

p

) ∏
p2|m

(
1− 1

p

)2

(1.3)

The proof is a simple exercise in Möbius inversion. Indeed, we have φ = 1 ⋆ φ⋆ , whence φ⋆ = µ ⋆ φ , i.e.,

φ⋆ (m) =
∑
d|m

µ (d)φ
(m
d

)
giving 1.3 by multiplicativity. In the same way using the orthogonality of characters we infer a more general result

⋆∑
χ( mod m)

χ (a) =
∑

d|(a−1,m)

φ (d)µ
(m
d

)
if (a,m) = 1.

Incidentally, the formula 1.3 shows that the primitive characters χ ( mod m) exist precisely when m2 ( mod 4) .
The primitive characters are pleasant to deal with. For example, we have a convenient formula (which is not valid for

χ not primitive)
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1.4 Gauss sums

(3.9)
1

m

∑
c( mod m)

χ (ac+ b) =

{
χ (b) if m | a
0 if m ∤ a

Indeed, letting S be the above sum we obtain χ (1 +m1x)S = S for any x , where m1 = m (a,m) /
(
a2,m

)
. If

S 6= 0 , this yields χ (1 +m1x) = 1 for any x , which implies that χ is periodic of period m1 . Since χ is primitive, we
must have m1 = m , i.e., m | a . Thus S = 0 if m ∤ a , and (3.9) is obvious otherwise.

The Dirichlet characters of exponent two are just the real characters (real-valued). In a number of ways they play
a special role, particularly they are fundamental in the theory of quadratic forms. Below we give a complete list of real
primitive characters. If m = p is an odd prime, then there exists exactly one real primitive character of conductor p ,
namely the quadratic residue symbol (the Legendre symbol)

χp (n) =

(
n

p

)
This can be defined by saying that 1 + χp (n) is the number of solutions x ( mod p) to x2 ≡ n ( mod p) .
For m = 4 we have exactly one primitive character defined by

χ4 (n) = (−1)
n−1
2 if 2 ∤ n.

If m = 8 , we have two primitive characters

χ8 (n) = (−1)
1
8 (n−1)(n+1) if 2 ∤ n,

χ4χ8 (n) = (−1)
1
8 (n−1)(n+5) if 2 ∤ n.

Ifm is prime power, there are no real primitive characters of conductorm other than χ4, χ8, χ4χ8 and χp . Every real
primitive character χ ( mod m) is obtained as the product of the above ones. Therefore the conductor of a real primitive
character is a number of type 1, k, 4k, 8k where k is a positive odd and squarefree integer.

1.4 Gauss sums
Let us come back for a moment to a general finite abelian groupG . The characters ofG form a complete orthogonal

system so that any function f : G→ C has the Fourier expansion

f =
1

|G|
∑
ψ∈Ĝ

〈f, ψ〉ψ

with coefficients

〈f, ψ〉 =
∑
g∈G

f (g) ψ̄ (g)

� Exercise 1.1DUE TO DEDEKIND Prove that∏
ψ∈Ĝ

〈f, ψ〉 = detg,h∈G
(
f
(
gh−1

))
In the case of functions on residue classes, and on a finite field, both additive and multiplicative characters are present

and it is often necessary to transform the Fourier expansion in one of these systems to the other. In doing so we encounter
Gauss sums 〈χ, ψ〉 for any pair of multiplicative and additive characters χ, ψ respectively. We shall present the Gauss
sums for finite fields in due time.

Now we consider Gauss sums associated with characters on residue classes, say modulo m . For any multiplicative
character χ ( mod m) we put
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1.4 Gauss sums

τ (χ) =
∑

b( mod m)

χ (b) e

(
b

m

)
.

Multiplying by χ̄ (a) and summing over χ we derive by orthogonality

e
( a
m

)
=

1

φ (m)

∑
χ( mod m)

χ̄ (a) τ (χ) if (a,m) = 1.

This is the Fourier expansion of additive characters in terms of the multiplicative ones. Similarly

χ (a) τ (χ̄) =
∑

b( mod m)

χ̄ (b) e

(
ab

m

)
if (a,m) = 1

which gives the Fourier expansion of χ in terms of additive characters provided τ (χ̄) 6= 0 . Note that the condition
(a,m) = 1 in (3.12) can be dropped if χ is primitive because both sides vanish if (a,m) 6= 1 .

Lemma 1.1

♥

Suppose the character χ modulo m is induced by the primitive character χ⋆ modulo m⋆ . Then

τ (χ) = µ
( m
m⋆

)
χ⋆
( m
m⋆

)
τ (χ⋆) .

If χ ( mod m) is primitive, then

|τ (χ)| =
√
m

Proof We have

τ (χ) =

⋆∑
a( mod m)

χ⋆ (a) e
( a
m

)
=
∑
d|m

µ (d)χ⋆ (d)
∑

a( mod m
d )

χ⋆ (a) e

(
ad

m

)
.

The innermost sum vanishes unless d = m/m⋆ giving (3.13). To prove (3.14) we write

|τ (χ)|2 =
∑

a,b( mod m)

∑
χ(a)

χ (a) χ̄ (b) e

(
a− b

m

)

=
∑

a( mod m)

χ (a)

⋆∑
b( mod m)

e

(
(a− 1) b

m

)
.

The inner sum is the Ramanujan sum (which is also the Gauss sum for the principal character).we get

|τ (χ)|2 =
∑
d|m

dµ
(m
d

) ∑
a( mod m)
a≡1( mod d)

χ (a) .

If χ is primitive of conductor m , then the last sum vanishes unless d = m

One can see by Lemma 1.1 that τ (χ) does not vanish exactly when m/m⋆ is squarefree and prime to m⋆ .
We now consider the more general sum

τ (χ, ψa) =
∑

b( mod m)

χ (b)ψa (b)

where ψa (b) = e (ab/m) is an additive character.
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1.5 Real characters

Lemma 1.2

♥

Let χ modulo m be a non-principal character induced by the primitive character χ⋆ modulo m⋆ . Let a ≥ 1 . We
have

τ (χ, ψa) = τ (χ)
∑

d|(a,m/m⋆)

dχ̄⋆ (a/d)µ (m/dm⋆) , (1.4)

in particular,

τ (χ, ψa) = χ̄ (a) τ (χ)

if (a,m) = 1 , i.e. if ψa is a primitive additive character.

Note that τ̄ (χ) = χ (−1) τ (χ̄) , hence if χ ( mod m) is primitive, then (1.4) can be written as

τ (χ) τ (χ̄) = χ (−1)m

For any characters χ1 ( mod m1) and χ2 ( mod m2) with (m1,m2) = 1 we have

τ (χ1χ2) = χ1 (m2)χ2 (m1) τ (χ1) τ (χ2)

This multiplication rule fails if the moduli are not relatively prime. For characters to the same modulus the correction
factor is the Jacobi sum

J (χ1, χ2) =
∑

a( mod m)

χ1 (a)χ2 (1− a) .

Precisely if χ1, χ2 are two characters modulo m such that χ1χ2 is primitive, then

τ (χ1) τ (χ2) = J (χ1, χ2) τ (χ1χ2)

Hence if all χ1, χ2, χ1χ2 are primitive of modulus m , then

|J (χ1, χ2)| =
√
m

If χ ( mod m) is primitive, then

J (χ, χ̄) = χ (−1)µ (m)

1.5 Real characters
For a primitive character χ ( mod m) we know that |τ (χ)| =

√
m , however, the determination of the argument of

τ (χ) is a difficult problem. Using Deligne’s estimate for multiple Kloosterman sums one can show that τ (χ) /
√
m are

asymptotically equidistributed on the unit circle as χ ( mod m) ranges over all primitive characters andm tends to infinity
over primes.

In the case of real characters τ (χ) were evaluated completely by Gauss. It is easy to see that τ (χ4) = 2i, τ (χ8) =

2
√
2 and τ (χ4χ8) = 2

√
2i .

Theorem 1.1
(GAUSS). For m odd squarefree

τ (χ) = εm
√
m
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1.5 Real characters

♥

where

εm =

{
1 if m ≡ 1 ( mod 4)

i if m ≡ −1 ( mod 4)

We shall give an analytic proof . But first we evaluate other Gauss sums of type

G (m) =
∑

n( mod m)

e

(
n2

m

)

for any integerm ≥ 1 . Ifm is even we derive by shifting n to n+m
2 thatG (m) = imG (m) , because 1

m

(
n+ m

2

)2 ≡
n2

m + m
4 ( mod 1) . Hence

G (m) = 0, if m ≡ 2 ( mod 4) .

Next we show that

G
(
m3
)
= mG (m) , if m2 ( mod 4) .

This follows by splitting the summation inG
(
m3
)

into n ≡ a+bm2
(
mod m3

)
if 2 ∤ m or n ≡ a+bm

2

2

(
mod m3

)
if 4 | m . Now we are ready to prove

Theorem 1.2 (DIRICHLET)

♥

For any m ∈ N ,

Ḡ (m) =
1 + im

1 + i

√
m

Proof We have

G (m) = 2
∑

0<n<m
2

e

(
n2

m

)
+O (1)

In the segment m
4 < n < m

2 we change n into
[
m
2

]
− n = m

2 − {m2 } − n. Since

(

1

m

([m
2

]
− n

)2
=

1

m

(
n+

{m
2

})2
− m

4
+
[m
2

]
− n

≡ 1

m

(
n+

{m
2

})2
− m

4
( mod 1)

we obtain

G (m) = 2
∑

0<n<m
4

e

(
n2

m

)
+ 2i−m

∑
0<n<m

4

e

(
(n+ {m/2})2

m

)
+O (1) .

Here, and as before, the error termO (1) accounts for the terms which are not covered in the displayed summation (at
most two of them). ∫ m/4

0

e

(
x2

m

)
dx =

∫ ∞

0

e

(
x2

m

)
dx+O (1) =

1 + i

4

√
m+O (1) .

Hence adding up these results we get

G (m) =
1 + i−m

1 + i−1

√
m+O (1) .

It remains to show that the last error term O (1) vanishes.
We generalize G (m) by setting
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1.5 Real characters

G
( a
m

)
=

∑
n( mod m)

e

(
an2

m

)
for any a with (a,m) = 1 . In particular, G

(
1
m

)
= G (m) . If m = m1m2 with (m1,m2) = 1 , we obtain

G

(
a

m1m2

)
= G

(
am2

m1

)
G

(
am1

m2

)
by writing n = n1m2 + n2m1 with n1 and n2 ranging modulo m1 and m2 respectively. This formula reduces the

problem of evaluating generalized Gauss sum G (a/m) to that of a prime power modulus. If m = p is an odd prime we
can write

G

(
a

p

)
=

∑
b( mod p)

(
1 +

(
b

p

))
e

(
ab

p

)

since 1 +
(
b
p

)
is the number of solutions to n2 ≡ b ( mod p) . Therefore

G

(
a

p

)
=

∑
b( mod p)

(
b

p

)
e

(
ab

p

)
=

(
a

p

)
G

(
1

p

)
=

(
a

p

)
εp
√
p

εpq
√
pq = G

(
1

pq

)
= G

(
p

q

)
G

(
q

p

)
=

(
p

q

)(
q

p

)
εpεq

√
pq. (1.5)

Note also that

εpq = εpεq(−1)
p−1
2

q−1
2 . (1.6)

Combining these formulas we deduce

Theorem 1.3 (QUADRATIC RECIPROCITY LAW)

♥

For any odd primes p 6= q we have (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 . (1.7)

Since G (−1/p) = Ḡ (1/p) it follows from (3.29) that for odd p(
−1

p

)
= ε2p = (−1)

p−1
2 = χ4 (p) .

� Exercise 1.2 Prove that for odd p , (
2

p

)
= (−1)

1
8 (p

2−1) = χ8 (p)

Note we have proved that

∑
x( mod m)

( x
m

)
e
( x
m

)
=

∑
x( mod m)

e

(
x2

m

)
if m is odd squarefree. If m is odd but not squarefree, the left side vanishes while the right side does not.
For convenience we extend the Legendre symbol

(
a
p

)
to p = 2 by setting

(a
2

)
=

{
1 if 2 ∤ a
0 if 2 | a

Then for any b > 0 we define
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1.5 Real characters

(a
b

)
=
∏
pv∥b

(
a

p

)ν
If b is odd, this symbol

(
a
b

)
was introduced by Jacobi.

� Exercise 1.3 for any odd integers a, b relatively prime(
a

|b|

)(
b

|a|

)
= (−1)

a−1
2

b−1
2 (a, b)∞.

Here (x, y)∞ is the Hilbert symbol defined for xy 6= 0 by

(x, y)∞ =

{
−1 if x < 0 and y < 0

1 otherwise.

Notice that 2(x, y)∞ = 1 + signx+ sign y − signxy .
� Exercise 1.4 Prove that for any a,m with (2a,m) = 1 ,

G
( a
m

)
=
( a
m

)
εm

√
m

Finally we extend the symbol
(
a
b

)
to all integers a, b except for a = b = 0 . If ab 6= 0 , we set

(a
b

)
=

(
a

|b|

)
(a, b)∞

Then we set (
1

0

)
=

(
0

1

)
=

(
0

−1

)
= −

(
−1

0

)
= 1

and (a
b

)
= 0 if (a, b) 6= 1

� Exercise 1.5 Check the consistency of the above settings. Prove that for any b ≥ 1 the map a 7→
(
a
b

)
is a Dirichlet character

modulo b. Prove that for any a 6= 0 the map b 7→
(
a
b

)
is a Dirichlet character of conductor a⋆ | 4a .

The above extension of
(
a
b

)
will be called the Jacobi symbol

Any integer ∆ 6= 0 with ∆ ≡ 0, 1 ( mod 4) is called a discriminant. If ∆ = 1 or ∆ is the discriminant of a quadratic
field, then ∆ is said to be fundamental. Any discriminant can be written uniquely as ∆ = e2D with D fundamental and
e ≥ 1 . A prime discriminant is a fundamental discriminant having exactly one prime factor, thus it is a number of type
−4,−8, 8 and χ4 (p) p with p > 2 . Every fundamental discriminant factors into prime discriminants.

To any discriminant ∆ one associates the Kronecker symbol
(
∆
c

)
K

which is defined for any c 6= 0 by means of the
Jacobi symbol as follows (

∆

c

)
K

=

(
2ν

∆

)(
∆

b

)
(1.8)

where c = 2νb with b odd. Note that
(
∆
2

)
K

=
(

2
∆

)
= χ8 (∆) , explicitly

(
∆

2

)
K

=


1 if ∆ ≡ 1 ( mod 8)

−1 if ∆ ≡ 5 ( mod 8)

0 if ∆ ≡ 0 ( mod 4)

(1.9)

We also extend the definition of the Kronecker symbol for c = 0 by setting
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1.6 The quartic residue symbol

(
∆

0

)
K

=

{
1 if ∆ = 1

0 otherwise.

Therefore
(
∆
c

)
K

is defined for all integers c and ∆ 6= 0,∆ ≡ 0, 1 ( mod 4) .
We shall drop the subscript K in the Kronecker symbol notation and explain in any relevant case that we are dealing

with the Kronecker symbol. Remember the Kronecker symbol is not defined for ∆ ’s other than discriminants. When the
symbol

(
∆
c

)
appears without comments it stands for the Jacobi symbol.

� Exercise 1.6 Prove that for a fundamental discriminant ∆ the Kronecker symbol
(
∆
c

)
is a primitive character of conductor

|∆| .

1.6 The quartic residue symbol
Next we construct certain characters of order four. These are associated with Q (i) , the imaginary quadratic field of

discriminant D = −4 . The ring of integers of Q (i) is

Z [i] = {z = a+ bi : a, b ∈ Z}

and the group of units of Z [i] is
{
1, i, i2, i3

}
. The irreducible elements of Z [i] are (up to the units); 1 + i with

N (1 + i) = 2 , the rational primes q ≡ −1 ( mod 4) with Nq = q2 and the complex numbers π = a+ bi with

Nπ = ππ̄ = a2 + b2 = p ≡ 1 ( mod 4) .

Note that π and π̄ are coprime, these are called Gaussian primes. Every element of Z [i] different from zero factors
uniquely (up to the units and permutations) into powers of irreducible elements.

For every Gaussian prime π we define a map (the quartic residue symbol)(α
π

)
: Z [i] →

{
0, 1, i, i2i3

}
which satisfies (α

π

)
≡ α

p−1
4 ( mod π)

Note that
(
α
π

)
= 0 if π | α . If π ∤ α , then αp−1 ≡ 1 ( mod π) because the residue class ring Z

[
i̇
]
/πZ [i] is a

finite field with p = Nπ elements. This property (the little theorem of Fermat) implies the existence and the uniqueness
of solutions with

(
α
π

)
= im for some 0 ≤ m < 4 . In particular, we have(

i

π

)
= i

p−1
4 , if p = ππ̄ ≡ 1 ( mod 4) .

� Exercise 1.7 Prove the following properties of the quartic residue symbol:(
αβ

π

)
=
(α
π

)(β
π

)

α ≡ β ( mod π) ⇒
(α
π

)
=

(
β

π

)
( α
π′

)
=
(α
π

)
if π′ = πim

( ᾱ
π̄

)
=
( ᾱ
π

)

10



1.6 The quartic residue symbol

(α
π

)
= 1

if and only if
z4 ≡ α ( mod π)

has a solution in
Z[i]⋆

.
If γ = π1 · · ·πr is the product of Gaussian primes (not necessarily distinct), then we set the symbol(

α

γ

)
=

(
α

π1

)
· · ·
(
α

πr

)
Clearly the properties hold true with π replaced by γ . In particular,(

α

p

)
= 1 if (α, p) = 1

Note that (1 + i)
2
= 2i . We say that α ∈ Z [i] is odd if (1 + i) ∤ α and primary if α ≡ 1 ( mod 2 (1 + i)) . Every

odd number in Z [i] is associated with exactly one primary element, i.e., εα ≡ 1 ( mod 2 (1 + i)) for exactly one unit
ε = im . A primary element can be written as the product of primary irreducibles uniquely up to permutations. We have
the following

Theorem 1.4 (THE LAW OF QUARTIC RECIPROCITY)

♥

If π1, π2 are distinct primary Gaussian primes, then(
π1
π2

)(
π2
π1

)
= (−1)

p1−1
4

p2−1
4

where p1 = Nπ1 and p2 = Nπ2 . If π = a+ bi is primary, then(
i

π̄

)
= i(1−a)/2,

(
1 + i

π

)
= i(a−1−b−b2)/4,

(
2

π

)
= i−b/2.

The quartic residue symbol
(
α
π

)
is a multiplicative character of the finite field Fp ' Z [i] /πZ [i] . The Gauss sum

of this character is

g (π) =
∑

a( mod p)

(α
π

)
e

(
a

p

)
where a runs over the rational residue classes modulo p and α is the representative of a in Z [i] modulo π . If π is

primary, then

g2 (π) = −(−1)
p−1
4 π

√
p

We shall be interested in the quartic residue symbol at rational integers

χπ (n) =
(n
π

)
, for n ∈ Z.

This is a Dirichlet character of conductor p = ππ̄ and of order four. Since (π, π̄) = 1 , we have χ2
π (n) ≡

n
p−1
2 ( mod p) . Therefore

χ2
π (n) =

(
n

p

)

11



1.7 The Jacobi-Dirichlet and the Jacobi-Kubota symbols

is the quadratic residue symbol. Clearly χπ (n) and χπ̄ (n) are distinct Dirichlet characters but their squares yield
the same quadratic character. More generally, if q = p1 · · · pr is the product of distinct primes pj ≡ 1 ( mod 4) , then
there are 2r distinct Dirichlet characters χ ( mod q) satisfying χ2 = χq , namely χ = χπ1

· · ·χπr
= χγ , say, for any

γ = π1 · · ·πr with γγ̄ = q .

1.7 The Jacobi-Dirichlet and the Jacobi-Kubota symbols

Let q be the product of primes ≡ 1 ( mod 4) (not necessarily distinct primes). The Jacobi symbol χq (n) =
(
n
q

)
can be extended to Gaussian domain Z [i] in several ways corresponding to representations of q as the sum of two squares

q = u2 + v2 with (u, v) = 1.

By requiring w = u+ iv to be primary we distinguish u from v and we fix the sign of u . Note that u ≡ 1 ( mod 2)

and v ≡ u− 1 ( mod 4) . A Gaussian integer w = u+ iv is said to be primitive if (u, v) = 1 , thus an odd w is primitive
if (w, w̄) = 1 . For any primary primitive w we define the symbol

(
z
w

)
: Z [i] → {0, 1,−1} by

( z
w

)
=

(
Rewz

|w|2

)
where on the right side is the Jacobi symbol. More explicitly we have

( z
w

)
=

(
ur − vs

q

)
, if z = r + is

where q = ww̄ . If q is prime ≡ 1 ( mod 4), we get two different symbols
(
z
w

)
and

(
z
w

)
which were considered

by Dirichlet [Dir] . Throughout we call
(
z
w

)
the Jacobi-Dirichlet symbol whenever w is primary and primitive.

We could introduce the Jacobi-Dirichlet symbols using roots of quadratic congruences: there is one-to-one corre-
spondence between the roots of

ω2 + 1 ≡ 0 ( mod q)

and the factorizations q = ww̄ with w = u+ iv primary which is given by

ω ≡ −ūv ( mod q)

Here ū denotes the multiplicative inverse of u modulo q . We obtain

( z
w

)
=

(
r + ωs

q

)
if z = r + is

by
(
u
q

)
=
(

|u|
q

)
=
(
q
|u|

)
=
(
v2

|u|

)
= 1 . Hence it is clear that

( r
w

)
=

(
r

q

)
if r ∈ Z

For z = i we have (
i

w

)
= i

p−1
2

Clearly
(
z
w

)
is periodic in z of period q , and it is multiplicative as well since

(r1 + ωs1) (r2 + ωs2) ≡ r1r2 − s1s2 + ω (r1s2 + r2s1) ( mod q) .

� Exercise 1.8 Derive from the quadratic reciprocity law the following reciprocity law for the Jacobi-Dirichlet symbol
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1.7 The Jacobi-Dirichlet and the Jacobi-Kubota symbols

( z
w

)
=
(w
z

)
for any z and w which are primary and primitive.
For Gaussian integers z = r + is ≡ 1 ( mod 2) , we define

[z] = i
r−1
2

(
s

|r|

)
where

(
s
|r|

)
stands for the Jacobi symbol. Note that [z] vanishes if z is not primitive. We are interested in the

multiplicative structure of [z] within the Gaussian ring Z [i] rather than with respect to the co-ordinates (r, s) ∈ Z × Z .
For this reason we refer to [z] as the Jacobi-Kubota symbol. Indeed, this symbol is relevant to the Kubota homomorphism
SL (2,Z) → {±1} which has much to do with metaplectic modular forms. Of course, [z] is not multiplicative in the strict
sense, yet it is nearly so, up to a factor which is the Jacobi-Dirichlet symbol.

� Exercise 1.9 Prove that if w is primary primitive and z ≡ 1 ( mod 2) , then

[wz] = ε [w] [z]
( z
w

)
with ε = ±1 depending only on the quadrants to which z, w and wz belong
Both symbols of Jacobi-Dirichlet and Jacobi-Kubota are utilized in the proof of the asymptotic formula for primes

p = X2 + Y 4 . They play a role through the estimation for general bilinear forms in [wz]
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