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Chapter 1 Dirichlet L -functions

The theory of analytic functions has many applications in number theory.A particularly spectacular application was
discovered by Dirichlet who proved in 1837 that there are infinitely many primes in any arithmetic progression b, b +
m, b+ 2m, . . ., where (m, b) = 1. To do this he introduced the L-functions which bear his name. In this chapter we will
define these functions, investigate their properties, and prove the theorem on arithmetic progressions. The use of Dirichlet
L-functions extends beyond the proof of this theorem. It turns out that their values at negative integers are especially
important. We will derive these values and show how they relate to Bernoulli numbers.

1.1 Zeta Function

The Riemann zeta function ζ (s) is defined by ζ (s) =
∞∑

n=1
n−s . It converges for s > 1 and converges uniformly for

s ≥ 1 + δ > 1 , for each δ > 0 .

Proposition 1.1

♠

For s > 1

ζ (s) =
∏
p

(
1− p−s

)−1

where the product is over all primes p > 0

Proof For s > 1, p−s < 1 , so we have (1− p−s)
−1

=
∞∑

m=0
p−ms.By the theorem of unique factorization∏

p≤N

(
1− p−s

)−1
=
∑
n≤N

n−s +RN (s)

Clearly, RN (s) ≤
∞∑

n=N+1

n−s . Since ζ (s) converges, RN (s) → 0 as N → ∞ . The result follows.

The behavior of ζ (s) as s→ 1 is very important. Since
∞∑

n=1
n−1 diverges we, of course, suspect ζ (s) → ∞ as s→ 1

. In fact,

Proposition 1.2

♠

Assume s > 1 . Then

lim
s→1

(s− 1) ζ (s) = 1

Proof For fixed s, t−s is a monotone decreasing function of t . Thus,

(n+ 1)
−s

<

∫ n+1

n

t−sdt < n−s.

Summing from n = 1 to ∞ ,

ζ (s)− 1 <

∫ ∞

1

t−sdt < ζ (s)

The value of the integral is (s− 1)
−1 . It follows that 1 < (s− 1) ζ (s) < s . Taking the limit as s → 1 gives the

result.



1.1 Zeta Function

Corollary 1.1

♡

As s→ 1 we have

ln ζ (s)

ln (s− 1)
−1 → 1

Proof Let (s− 1) ζ (s) = ρ (s) . Then ln (s− 1) + ln ζ (s) = ln ρ (s) so we have ln ζ (s) / ln (s− 1)
−1

= 1 +(
ln ρ (s) / ln (s− 1)

−1
)
.

As s→ 1, ρ (s) → 1 by the proposition. Therefore, ln ρ (s) → 0 and the result follows.

Proposition 1.3

♠
ln ζ (s) =

∑
p
p−s +R (s) where R (s) remains bounded as s→ 1 .

Proof We use the formula − ln (1− x) = x+ x2/2 + x3/3 + · · · which is valid for −1 < x < 1 .
we have

ζ (s) =
∏
p≤N

(
1− p−s

)−1
λN (s)

where λN (s) → 1 asN → ∞ . Taking the logarithm of both sides yields ln ζ (s) =
∑
p≤N

∞∑
m=1

m−1p−ms+lnλN (s) .

Taking the limit as N → ∞

ln ζ (s) =
∑
p

∞∑
m=1

m−1p−ms

=
∑
p

p−s +
∑
p

∞∑
m=2

m−1p−ms.

The second sum is less than

∑
p

∞∑
m=2

p−ms =
∑
p

p−2s
(
1− p−s

)−1

≤
(
1− 2−s

)−1∑
p

p−2s ≤ 2ζ (2) .

Throughout we have used the assumption that s > 1 .

Definition 1.1

♣

A set of positive primes P is said to have Dirichlet density if

lim
s→1

∑
p∈P

p−s

ln (s− 1)
−1

exists. If the limit exists we set it equal to d (P) and call d (P) the Dirichlet density of P .

Proposition 1.4

♠

Let P be a set of positive prime numbers. Then
(a) If P is finite, then d (P) = 0 .
(b) If P consists of all but finitely many positive primes, then d (P) = 1 .
(c) If P = P1 ∪P2 where P1 and P2 are disjoint and d (P1) and d (P2) both exist, then d (P) = d (P1)+ d (P2) .
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1.2 Dirichlet Characters

Proof Parts (a) and (c) are clear from the definition of Dirichlet density. Part (b) follows quickly from the corollary to
Proposition 16.1.2 and Proposition 16.1.3.

We are now in a position to state the main theorem of this chapter. The proof will be spread out over the next three
sections.

Theorem 1.1 (L. Dirichlet)

♡

Suppose a,m ∈ Z , with (a,m) = 1 . Let P (a;m) be the set of positive primes p such that p ≡ a (m) . Then
d (P (a;m)) = 1/ϕ (m) .

�
Note The Theorem certainly implies P (a;m) is infinite, since if it were finite its density would be zero.

1.2 Dirichlet Characters
omit

1.3 Dirichlet L -functions

Definition 1.2

♣

Let χ be a Dirichlet character modulo m.Dirichlet L-function associated to χ by the formula

L (s, χ) =

∞∑
n=1

χ (n)n−s.

Since |χ (n)n−s| ≤ n−s we see that the terms ofL (s, χ) are dominated in absolute value by the corresponding terms
of ζ (s) . Thus L (s, χ) converges and is continuous for s > 1 . Moreover, since χ is completely multiplicative we have a
product formula for L (s, χ) in exactly the same way as for ζ (s) . Namely,

L (s, χ) =
∏
p

(
1− χ (p) p−s

)−1
.

Since χ (p) = 0 for p | m the above product is over positive primes not dividing m . The formula is valid for s > 1 .
There is a close connection between L (s, χ0) and ζ (s) . In fact,

L (s, χ0) =
∏
p∤m

(
1− p−s

)−1

=
∏
p|m

(
1− p−s

)∏
p

(
1− p−s

)−1

=
∏
p|m

(
1− p−s

)
ζ (s)

From Proposition 1.1 we see lim
s→1

(s− 1)L (s, χ0) =
∏
p|m

(
1− p−1

)
= ϕ (m) /m . In particular L (s, χ0) → ∞ as

s→ 1 .
Let χ be a Dirichlet character and define G (s, χ) =

∑
p

∑
k=1

(1/k)χ
(
pk
)
p−ks . Since

∣∣(1/k)χ (pk) p−ks
∣∣ ≤ p−ks

and since ζ (s) converges for s > 1 and converges uniformly for s ≥ 1 + δ > 1 we can conclude the same assertions are
true for G (s, χ) . Consequently G (s, χ) is continuous for s > 1 . Moreover, for z a complex number with |z| < 1 we

have exp

( ∞∑
k=1

(1/k) zk
)

= (1− z)
−1 , where exp denotes the usual exponential function. Substituting z = χ (p) p−s

3



1.4 The Key Step

we find exp

( ∞∑
k=1

(1/k)χ
(
pk
)
p−ks

)
= (1− χ (p) p−s)

−1 and a simple argument then shows expG (s, χ) = L (s, χ)

for all s > 1 . Thus the infinite series G (s, χ) provides an unambiguous definition for lnL (s, χ) . To avoid confusion we
work directly with G (s, χ) .

From the definition and the argument used in the proof of Proposition 16.1.3 we find

G (s, χ) =
∑
p∤m

χ (p) p−s +Rχ (s) (i)

where Rχ (s) remains bounded as s → 1 . Multiply both sides of (i) by χ (a) where a ∈ Z, (a,m) = 1 . Then sum
over all Dirichlet characters modulo m . The result is

∑
χ

χ (a)G (s, χ) =
∑
p∤m

p−s
∑
χ

χ (a)χ (p) +
∑
χ

χ (a)Rχ (s) .

thus

∑
χ

χ (a)G (s, χ) = ϕ (m)
∑

p≡a(m)

p−s +Rχ,a (s) (ii)

where Rχ,a (s) remains bounded as s→ 1 .
To conclude the proof of Theorem 1.1 we need the following proposition.

Proposition 1.5

♠

If χ0 denotes the trivial character modulom , then lim
s→1

G (s, χ0) / ln (s− 1)
−1

= 1 . If χ is a nontrivial Dirichlet
character modulo m , then G (s, χ) remains bounded as s→ 1 .

Proof The first assertion is easy. L (s, χ0) is a real valued function of positive real numbers. We have seen L (s, χ0) =∏
p|m

(1− p−s) ζ (s) . It follows that G (s, χ0) =
∑
p|m

ln (1− p−s) + ln ζ (s) .

The second assertion is quite deep. It is the most difficult part of the proof of Dirichlet’s theorem on arithmetic
progressions. We postpone the proof to the next section.

Now, assuming the above proposition, the proof of Dirichlet’s theorem follows quickly from Equation (ii). We simply
divide all the terms on both sides by ln (s− 1)

−1 and take the limit as s → 1 . By the above proposition, the limit on the
left-hand side is 1 whereas the limit on the right-hand side is ϕ (m) d (P (a;m)) . Thusd (P (a;m)) = 1/ϕ (m) and we
are done.

1.4 The Key Step
Up to now all our functions have been defined for s > 1 . We will show how to extend the domain of definition

to s > 0 . In particular, if χ is nontrivial we will see that L (1, χ) is a well defined complex number and prove that
L (1, χ) ̸= 0 .

In what follows we will consider s as a complex variable. Write s = σ + it where σ and t are real. The symbol σ
will be used throughout to denote the real part of s .

If a > 0 is real then |as| = aσ . From this observation we see that the series defining ζ (s) and L (s, χ) converge and
define an analytic function of the complex variable s in the half plane {s ∈ C | σ > 1} .

Lemma 1.1

Suppose {an} and {bn} for n = 1, 2, 3, . . . are sequences of complex numbers such that
∞∑

n=1
anbn converges. Let

An = a1 + a2 + · · ·+ an and suppose Anbn → 0 as n→ ∞ . Then

4



1.4 The Key Step

♡

∞∑
n=1

anbn =

∞∑
n=1

An (bn − bn+1)

Proof Let SN =
N∑

n=1
anbn . Set A0 = 0 . Then

SN =

N∑
n=1

(An −An−1) bn =

N∑
n=1

Anbn −
N∑

n=1

An−1bn

=

N∑
n=1

Anbn −
N−1∑
n=1

Anbn+1

= ANbN +

N−1∑
n=1

An (bn − bn+1) .

Taking the limit as N → ∞ yields the result.

Proposition 1.6

♠
ζ (s)− (s− 1)

−1 can be continued to an analytic function on the region {s ∈ C | σ > 0} .

Proof Assume σ > 1 . Then, by the lemma

ζ (s) =

∞∑
n=1

n−s =

∞∑
n=1

n
(
n−s − (n+ 1)

−s
)
.

For a real number x recall that [x] is the greatest integer less than or equal to x and ⟨x⟩ = x − [x] . From the above
expression for ζ (s) we find

ζ (s) = s

∞∑
n=1

n

∫ n+1

n

x−s−1dx

= s

∞∑
n=1

∫ n+1

n

[x]x−s−1dx

= s

∫ ∞

1

[x]x−s−1dx

= s

∫ ∞

1

x−sdx− s

∫ ∞

1

⟨x⟩x−s−1dx

=
s

s− 1
− s

∫ ∞

1

⟨x⟩x−s−1dx

Since |⟨x⟩| ≤ 1 for all x the last integral converges and defines an analytic function for σ > 0 . The result follows.
We will use the same technique to extend L (s, χ) but first we need another lemma.

Lemma 1.2

♡
Let χ be a nontrivial character modulo m . For all N > 0 we have

∣∣∣∣ N∑
n=0

χ (n)

∣∣∣∣ ≤ ϕ (m) .

Proof Write N = qm+ r where 0 ≤ r < m . Since χ (n+m) = χ (n) for all n we see

N∑
n=1

χ (n) = q

(
m−1∑
n=0

χ (n)

)
+

r∑
n=0

χ (n)

5



1.4 The Key Step

we have
m−1∑
n=0

χ (n) = 0 . Thus,∣∣∣∣∣
N∑

n=0

χ (n)

∣∣∣∣∣ =
∣∣∣∣∣

r∑
n=0

χ (n)

∣∣∣∣∣ ≤
m−1∑
n=0

|χ (n)| = ϕ (m) .

Proposition 1.7

♠

Let χ be a nontrivial Dirichlet character modulo m. Then, L (s, χ) can be continued to an analytic function in the
region {s ∈ C | σ > 0} .

Proof Define S (x) =
∑
n≤x

χ (n) .

By Lemma 1.1 we have for σ > 1 ,

L (s, χ) =

∞∑
n=1

S (n)
(
n−s − (n+ 1)

−s
)

= s

∞∑
n=1

S (n)

∫ n+1

n

x−s−1dx

= s

∫ ∞

1

S (x)x−s−1dx

By Lemma 1.2, |S (x)| ≤ ϕ (m) for all x . It follows that the above integral converges and defines an analytic function
for all s such that σ > 0 .

Our goal is to show that for χ nontrivial L (1, χ) ̸= 0 . The next proposition will enable us to give a simple proof in
the case where χ is a complex character, i.e., a character which takes on nonreal values.

Proposition 1.8

♠

Let F (s) =
∏
x
L (s, χ) where the product is over all Dirichlet characters modulo m . Then, for s real and s > 1

we have F (s) ≥ 1 .

Proof Assume s is real and s > 1 . Recall that

G (s, χ) =
∑
p

∞∑
k=1

1

k
χ
(
pk
)
p−ks.

Summing over χ , we find

∑
χ

G (s, χ) = ϕ (m)
∑ 1

k
p−ks

where the sum is over all primes p and integers k such that pk ≡ 1 (m) .
The right-hand side of the above equation is nonnegative (in fact, it is positive). Taking the exponential of both sides

shows
∏
x
L (s, χ) ≥ 1 as asserted.

Proposition 1.9

♠
If χ is a nontrivial complex character modulo m , then L (1, χ) ̸= 0 .

Proof From the series defining L (s, χ) we see that for s real, s > 1, L (s, χ) = L (s, χ̄) . Letting s tend towards 1 it
follows that L (1, χ) = 0 implies L (1, χ̄) = 0 .

Assume L (1, χ) = 0 where χ is a complex character. The functions L (s, χ) and L (s, χ̄) are distinct and both have
a zero at s = 1 . In the product F (s) =

∏
χ
L (s, χ) we know L (s, χ0) has a simple pole at s = 1 and all the other factors

6



1.4 The Key Step

are analytic about s = 1 . It follows that F (1) = 0 . However, Proposition 1.8 shows F (s) ≥ 1 for all real s > 1 . This
is a contradiction. Therefore, L (1, χ) ̸= 0

Lemma 1.3

♡

Suppose f is a nonnegative, multiplicative function on Z+ , i.e., for all m,n > 0 with (m,n) = 1, f ′ (mn) =

f (m) f (n) . Assume there is a constant c such that f
(
pk
)
< c for all prime powers pk . Then

∞∑
n=1

f (n)n−s

converges for all real s > 1 . Moreover

∞∑
n=1

f (n)n−s =
∏
p

(
1 +

∞∑
k=1

f
(
pk
)
p−ks

)
.

Proof Fix s > 1 . Let a (p) =
∞∑
k=1

f
(
pk
)
p−ks . Then a (p) < cp−s

∞∑
k=0

p−ks = cp−s(1− p−s)
−1 , and so a (p) < 2cp−s

. For positive x one has 1 + x < expx . Thus

∏
p≤N

(1 + a (p)) <
∏
p≤N

exp a (p) = exp
∑
p≤N

a (p) .

Now,
∑
p≤N

a (p) < 2c
∑
p
p−s =M . From the definition of a (p) and the multiplicativity of f we see

N∑
n=1

f (n)n−s <

∏
p≤N

(1 + a (p)) . It follows that
N∑

n=1
f (n)n−s < expM for all N . Since f is, by assumption, nonnegative we have

∞∑
n=1

f (n)n−s converges.

Theorem 1.2

♡
Let χ be a nontrivial Dirichlet character modulo m. Then L (1, χ) ̸= 0 .

Proof Having already proved that L (1, χ) ̸= 0 if χ is complex we assume χ is real.
Assume L (1, χ) = 0 and consider the function

ψ (s) =
L (s, χ)L (s, χ0)

L (2s, χ0)

The zero of L (s, χ) at s = 1 cancels the simple pole of L (s, χ0) so the numerator is analytic on σ > 0 . The
denominator is nonzero and analytic for σ > 1

2 . Thus ψ (s) is analytic on σ > 1
2 . Moreover, since L (2s, χ0) has a pole

at s = 1
2 we have ψ (s) → 0 as s→ 1

2 .
We assume temporarily that s is real and s > 1 . Then ψ (s) has an infinite product expansion

ψ (s) =
∏
p

(
1− χ (p) p−s

)−1(
1− χ0 (p) p

−s
)−1 (

1− χ0 (p) p
−2s
)

=
∏
p∤m

(
1− p−2s

)
(1− p−s) (1− χ (p) p−s)

.

If χ (p) = −1 the p -factor is equal to 1 . Thus

ψ (s) =
∏

χ(p)=1

1 + p−s

1− p−s

where the product is over all p such that χ (p) = 1 . Now,

1 + p−s

1− p−s
=
(
1 + p−s

)( ∞∑
k=0

p−ks

)
= 1 + 2p−s + 2p−2s + · · ·+ .

7



1.5 Evaluating L (s, χ) at Negative Integers

Applying Lemma 1.3 we find that ψ (s) =
∞∑

n=1
ann

−s where an ≥ 0 and the series converges for s > 1 . Note that

a1 = 1 .
We once again consider ψ (s) as a function of a complex variable and expand it in a power series about s = 2, ψ (s) =

∞∑
m=0

bm(s− 2)
m . Since ψ (s) is analytic for σ > 1

2 the radius of convergence of this power series is at least 3
2 . To

compute the bm we use Taylor’s theorem, i.e., bm = ψ(m) (2) /m ! where ψ(m) (s) is the m th derivative of ψ (s) . Since

ψ (s) =
∞∑

n=1
ann

−s we find ψ(m) (2) =
∞∑

n=1
an(− lnn)

m
n−2 = (−1)

m
cm with cm ≥ 0 . Thus ψ (s) =

∞∑
n=0

cm(2− s)
m

with cm nonnegative and c0 = ψ (2) =
∞∑

n=1
ann

−2 ≥ a1 = 1 . It follows that for real s in the interval
(
1
2 , 2
)

we have

ψ̄ (s) ≥ 1 . This contradicts ψ (s) → 0 as s→ 1
2 , and so L (1, χ) ̸= 0 .

Suppose χ is a nontrivial Dirichlet character. We want to show G (s, χ) remains bounded as s → 1 through real
values s > 1 .

Since L (1, χ) ̸= 0 there is a disc D about L (1, χ) such 0 /∈ D . Let ln z be a single-valued branch of the logarithm
defined on D . There is a δ > 0 such that L (s, χ) ∈ D for s ∈ (1, 1 + δ) . Consider lnL (s, χ) and G (s, χ) for s in this
interval. The exponential of both functions is L (s, χ) . Thus there is an integerN such thatG (s, χ) = 2πiN+lnL (s, χ)

for s ∈ (1, 1 + δ) . This implies lim
s→1

G (s, χ) exists and is equal to 2πiN + lnL (1, χ) . Since G (s, χ) has a limit as
s→ 1 it clearly remains bounded.

1.5 Evaluating L (s, χ) at Negative Integers
In the last section we showed how to analytically continue L (s, χ) into the region {s ∈ C | σ > 0} .Riemann

showed how to analytically continue these functions to the whole complex plane. As noted earlier this fact has important
consequences for number theory. For example, the values L (1− k, χ) , where k is a positive integer, are closely related
to the Bernoulli numbers. A knowledge of these numbers has deep connections with the theory of cyclotomic fields. We
will analytically continue L (s, χ) and evaluate the numbers L (1− k, χ) following a method due to D. Goss.

Before beginning we need to discuss some properties of the Γ -function. This is defined by

Γ (s) =

∫ ∞

0

e−tts−1dt (i)

It is not hard to see that the integral converges and defines an analytic function on the region {s ∈ C | σ > 0} . For
σ > 1 we integrate by parts and find

Γ (s) = −e−tts−1
∣∣∞
0

+ (s− 1)

∫ ∞

0

e−tts−2dt

It follows that Γ (s) = (s− 1) Γ (s− 1) for σ > 1 . Since Γ (1) =
∫∞
0
e−tdt= 1 we see Γ (n+ 1) = n ! for positive

integers n .
The functional equation Γ (s) = (s− 1) Γ (s− 1) enables us to analytically continue Γ (s) by a step by step process.
If σ > −1 we define Γ1 (s) by

Γ1 (s) =
1

s
Γ (s+ 1) (ii)

For σ > 0,Γ1 (s) = Γ (s) . Moreover, Γ1 (s) is analytic on σ > −1 except for a simple pole at s = 0 .
Similarly,

Definition 1.3

♣

if k is a positive integer

Γk (s) =
1

s (s+ 1) · · · (s+ k − 1)
Γ (s+ k) .

8



1.5 Evaluating L (s, χ) at Negative Integers

Γk (s) is analytic on {s ∈ C | σ > −k} except for simple poles at s = 0,−1, . . . , 1 − k and Γk (s) = Γ (s) for
σ > 0 . These functions fit together to give an analytic continuation of Γ (s) to the whole complex plane with poles at the
nonpositive integers and nowhere else. From now on Γ (s) will denote this extended function. We remark, without proof,
that Γ(s)−1 is entire.

We will now show how to analytically continue ζ (s) by the same process. It is necessary to express ζ (s) as an
integral. In Equation (i) substitute nt for t . We find, for σ > 1

n−sΓ (s) =

∫ ∞

0

e−ntts−1dt (iii)

Sum both sides of (iii) for n = 1, 2, 3, . . . . It is not hard to justify interchanging the sum and the integral. The result
is

Γ (s) ζ (s) =

∫ ∞

0

e−t

1− e−t
ts−1dt. (iv)

If we tried to integrate by parts at this stage we would be blocked by the fact that 1− e−t is zero when t = 0 . To get
around this we use a trick. In (iv) substitute 2t for t . We find

21−sΓ (s) ζ (s) = 2

∫ ∞

0

e−2t

1− e−2t
ts−1dt. (v)

Definition 1.4

♣
ζ∗ (s) =

(
1− 21−s

)
ζ (s) and R (x) = x/ (1− x)− 2

(
x2/

(
1− x2

))
.

Subtracting (v) from (iv) yields

Γ (s) ζ∗ (s) =

∫ ∞

0

R
(
e−t
)
ts−1dt. (vi)

What has been gained? A simple algebraic manipulation showsR (x) = x/ (1 + x) . ThusR (e−t) = e−t/ (1 + e−t)

has a denominator that does not vanish at t = 0 . The integral in Equation (vi) thus converges for σ > 0 and this equation
provides a continuation for ζ (s) to the region {s ∈ C | σ > 0} .

LetR0 (t) = R (e−t) and form ≥ 1, Rm (t) = (dm/dtm)R (e−t) . It is easy to see thatRm (t) = e−tPm (e−t) (1 + e−t)
−2m

where Pm is a polynomial. It follows that Rm (0) is finite and Rm (t) /e−t is bounded as t → ∞ . These facts enable us
to repeatedly integrate by parts in Equation (vi).

Take u = R (e−t) and dv = ts−1dt . Then du = R1 (t) dt and v = ts/s . Thus

Γ (s) ζ∗ (s) =
1

s
tsR0 (t)

∣∣∣∣∞
0

− 1

s

∫ ∞

0

R1 (t) t
sdt

and so

Γ (s+ 1) ζ∗ (s) = −
∫ ∞

0

R1 (t) t
sdt (vii)

The integral in (vii) converges to an analytic function in {s ∈ C | σ > −1} , and provides an analytic continuation
of ζ (s) to this region. Continuing this process we find for k a positive integer

Γ (s+ k) ζ∗ (s) = (−1)
k
∫ ∞

0

Rk (t) t
s+k−1dt (viii)

where the integral converges to an analytic function of s for σ > −k . This procedure provides an analytic continuation
of ζ (s) to the whole complex plane. We continue to use the notation ζ (s) for the extended function.
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1.5 Evaluating L (s, χ) at Negative Integers

Proposition 1.10

♠
Let k be a positive integer. Then, ζ (0) = − 1

2 and for k > 1, ζ (1− k) = −Bk/k .

Assume now that χ is a nontrivial character modulom . To handle L (s, χ) we proceed in exactly the same way as for
ζ (s) . In Equation (iii) multiply both sides by χ (n) and sum over n . The result is Γ (s)L (s, χ) =

∫∞
0
Fχ (e−t) ts−1dt ,

where

Fχ

(
e−t
)
=

∞∑
n=1

χ (n) e−nt =

m∑
a=1

χ (a)

∞∑
k=0

e−(a+km)t =

m∑
a=1

χ (a)
e−at

1− e−mt
.

If we define L∗ (s, χ) =
(
1− 21−s

)
L (s, χ) , then in the same way as we derived Equation (vi) we find

Γ (s)L∗ (s, χ) =

∫ ∞

0

Rχ

(
e−t
)
ts−1dt (ix)

where

Rχ (x) = Fχ (x)− 2Fχ

(
x2
)

=
m∑

a=1

χ (a)

(
xa

1− xm
− 2

x2a

1− x2m

)

=

m∑
a=1

χ (a)xa
(

1 + xm − 2xa

(1− x) (1 + x+ · · ·+ x2m−1)

)
.

For each value of a we see x = 1 is a root of 1 + xm − 2xa , and it follows that Rχ (x) has the form

Rχ (x) =
xf (x)

1 + x+ · · ·+ x2m−1

where f (x) is a polynomial. Let Rχ,0 (t) = Rχ (e−t) and Rχ,n = (dn/dtn)Rχ (e−t) . By repeated integration by
parts we find in the same way that we derived Equation (viii) that

Γ (s+ k)L∗ (s, χ) = (−1)
k
∫ ∞

0

Rχ,k (t) t
s+k−1dt. (x)

The integral in (x) converges to an analytic function in {s ∈ C | σ > −k} . These formulas provide an analytic
continuation of L∗ (s, χ) and thus L (s, χ) to the whole complex plane.

Before attempting to evaluate L (s, χ) at the negative integers we need a definition.

Definition 1.5

♣

Let χ be a nontrivial Dirichlet character modulo m . The generalized Bernoulli number Bn,χ is defined by the
following formula

m∑
a=1

χ (a)
teat

emt − 1
=

∞∑
n=0

Bn,χ

n!
tn (xi)

In the literature it is usual to defineBn,χ in this manner only if χ is a primitive character modulom . We will discuss
this point later.

Lemma 1.4

♡
tFχ (e−t) =

∞∑
n=0

(−1)
n
(Bn,χ/n!) t

n .
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1.5 Evaluating L (s, χ) at Negative Integers

Proposition 1.11

♠
Let k be a positive integer. Then L (1− k, χ) = −Bk,χ/k .

Proof In Equation (x) substitute s = 1 − k . The result is
(
1− 2k

)
L (1− k, χ) = (−1)

k∫∞
0
Rχ,k (t) dt . Since

Rχ,k (t) = (d/dt)Rχ,k−1 (t) it follows that
(
1− 2k

)
L (1− k, χ) = (−1)

k−1
Rχ,k−1 (0) . Since

Rχ,k−1 (t) =
dk−1

dtk−1
Rχ

(
e−t
)

and Rχ (e−t) = Fχ (e−t) − 2Fχ

(
e−2t

)
= (1/t)

∞∑
k=1

(−1)
k (

1− 2k
)
(Bk,χ/k!) t

k (by Lemma 1.1) we see that

(−1)
k−1

Rχ,k−1 (0) = −
(
1− 2k

)
(Bk,χ/k) . Thus, L (1− k, χ) = −Bk,χ/k as asserted.

It follows from Equation (xi) that the numbers Bk,χ are in the field generated over Q by the values of χ . Thus, in
particular, they are algebraic numbers.

As mentioned earlier it is usual to defineBn,χ by Equation (xi) only when χ is a primitive character modulom . This
means that χ when restricted to {n ∈ Z | (n,m) = 1} does not have a smaller period than m . The trivial character is
primitive only for the modulus 1 . From Equation (xi) we then have

∞∑
n=0

Bn,χ0

n!
tn =

tet

et − 1
= t+

t

et − 1
= 1 +

1

2
t+

∞∑
n=2

Bn

n!
tn.

Thus−B1,χ0 = B1 andBn,χ0 = Bn for n ̸= 2 . It is in this sense that theBn,χ are ”generalized Bernoulli numbers.”�
Note

The Bn,χ have many interesting arithmetic properties. The interested reader should consult Iwasawa’s monograph.
This monograph is devoted to showing how the equation L (1− k, χ) = −Bk,χ/k leads to p -adic L -functions and to the
remarkable connection between these functions and the theory of cyclotomic fields.
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