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Chapter 1 Mertens’s theorems

In this section, we derive some important results about the distribution of prime numbers that were originally proved
by Mertens.

Lemma 1.1

♡

For any real number x ≥ 1 we have

0 ≤
∑
n≤x

log
(x
n

)
< x

Proof It follows that

∑
1≤n≤x

log
(x
n

)
< log x+

∫ x

1

log
(x
t

)
dt

= x log x− (x log x− x+ 1)

< x

The function Λ (n) , called von Mangoldt’s function, is defined by

Λ (n) =

{
log p if n = pm is a prime power
0 otherwise.

Then

ψ (x) =
∑

1≤m≤x

Λ (m) .

Theorem 1.1 (Mertens)

♡

For any real number x ≥ 1 , we have

∑
n≤x

Λ (n)

n
= log x+O (1) .

Proof Let N = [x] . Then

0 ≤
∑
n≤x

log
x

n
= N log x−

N∑
n=1

log n = x log x− logN ! +O (log x) < x

and so

logN ! = x log x+O (x) .

It follows that

logN ! =
∑
p≤N

vp (N) log p

=
∑
p≤N

[logN/ log p]∑
k=1

[
N

pk

]
log p



=
∑

pk≤N

[
N

pk

]
log p

=
∑
pk≤x

[
x

pk

]
log p

=
∑
n≤x

[x
n

]
Λ (n)

=
∑
n≤x

(x
n
+O (1)

)
Λ (n)

= x
∑
n≤x

Λ (n)

n
+O

∑
n≤x

Λ (n)


= x

∑
n≤x

Λ (n)

n
+O (ψ (x))

= x
∑
n≤x

Λ (n)

n
+O (x) .

Therefore,

x
∑
n≤x

Λ (n)

n
+O (x) = x log x+O (x)

and

∑
n≤x

Λ (n)

n
= log x+O (1)

Theorem 1.2 (Mertens)

♡

For any real number x ≥ 1 , we have

∑
p≤x

log p

p
= log x+O (1)

Proof Since

0 ≤
∑
n≤x

Λ (n)

n
−
∑
p≤x

log p

p

=
∑
pk≤x
k≥2

log p

pk

≤
∑
p≤x

log p

∞∑
k=2

1

pk

≤
∑
p≤x

log p

p (p− 1)

≤ 2
∑
p≤x

log p

p2

2



≤ 2

∞∑
n=1

log n

n2

= O (1) ,

it follows from Theorem 1.1 that

∑
p≤x

log p

p
=
∑
n≤x

Λ (n)

n
+O (1) = log x+O (1) .

Theorem 1.3

♡

There exists a constant b1 > 0 such that

∑
p≤x

1

p
= log log x+ b1 +O

(
1

log x

)
for x ≥ 2 .

Proof We can write

∑
p≤x

1

p
=
∑
p≤x

log p

p

1

log p
=
∑
n≤x

u (n) f (n) ,

where

u (n) =

{
log p
p if n = p

0 otherwise

and

f (t) =
1

log t
.

We define the functions U (t) and g (t) by

U (t) =
∑
n≤t

u (n) =
∑
p≤t

log p

p
= log t+ g (t) .

Then U (t) = 0 for t < 2 and g (t) = O (1) by Theorem 1.2. Therefore, the integral
∫∞
2
g (t) /

(
t(log t)

2
)
dt

converges absolutely, and ∫ ∞

x

g (t) dt

t(log t)
2 = O

(
1

log x

)
.

Since f (t) is continuous and U (t) is increasing, we can express the sum
∑
p≤x

1/p as a Riemann-Stieltjes integral.

Note that U (t) = 0 for t < 2 . By partial summation, we obtain

∑
p≤x

1

p
=
∑
n≤x

u (n) f (n)

=
1

2
+

∫ x

2

f (t) dU (t)

= f (x)U (x)−
∫ x

2

U (t) df (t)

3



=
log x+ g (x)

log x
−
∫ x

2

U (t) f ′ (t) dt

= 1 +O

(
1

log x

)
+

∫ x

2

log t+ g (t)

t(log t)
2 dt

=

∫ x

2

1

t log t
dt+

∫ ∞

2

g (t)

t(log t)
2 dt−

∫ ∞

x

g (t)

t(log t)
2 dt+ 1 +O

(
1

log x

)

= log log x− log log 2 +

∫ ∞

2

g (t)

t(log t)
2 dt+ 1 +O

(
1

log x

)

= log log x+ b1 +O

(
1

log x

)
where

b1 = 1− log log 2 +

∫ ∞

2

g (t)

t(log t)
2 dt (1.1)

From the Taylor series for log (1− x) , we see that

0 < log

(
1− 1

p

)−1

− 1

p
=

∞∑
n=2

1

npn
<

∞∑
n=2

1

pn
=

1

p (p− 1)
.

It follows from the comparison test that the series

b2 =
∑
p

(
log

(
1− 1

p

)−1

− 1

p

)
=
∑
p

∞∑
k=2

1

kpk
(1.2)

converges.

Lemma 1.2

♡

Let b1 and b2 be the positive numbers defined by (1.1) and (1.2). Then

b1 + b2 = γ

where γ is Euler’s constant.

Proof Let 0 < σ < 1 . We define the function F (σ) by

F (σ) = log ζ (1 + σ)−
∑
p

1

p1+σ

=
∑
p

(
log

(
1− 1

p1+σ

)−1

− 1

p1+σ

)

=
∑
p

∞∑
n=2

1

npn(1+σ)
.

By the Weierstrass M-test, the last series converges uniformly for σ ≥ 0 and so represents a continuous function for
σ ≥ 0 . Therefore,

lim
σ→0+

F (σ) = b2

We shall find alternative representations for the functions log ζ (1 + σ) and
∑
p
p−1−σ . Since
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1− σ +
σ2

2e
< e−σ < 1− σ +

σ2

2

for 0 < σ < 1 , it follows that

1− σ

2
<

1− e−σ

σ
< 1− σ

2e

and

1 +
σ

2e
< 1 +

σ

2e− σ
<

σ

1− e−σ
< 1 +

σ

2− σ
< 1 + σ.

Therefore,

0 < log σ + log
(
1− e−σ

)−1
< σ,

and so

log
1

σ
= log

(
1− e−σ

)−1
+O (σ) .

we have
log ζ (1 + σ) = log

1

σ
+O (σ)

= log
(
1− e−σ

)−1
+O (σ)

=

∞∑
n=1

e−σn

n
+O (σ) .

As we know

L (x) =
∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
for x ≥ 1 . Let f (x) = e−σx . By partial summation, we have

log ζ (1 + σ) =

∞∑
n=1

f (n)

n
+O (σ)

=

∫ ∞

0

f (x) dL (x) +O (σ)

= −
∫ ∞

0

L (x) df (x) +O (σ)

= σ

∫ ∞

0

e−σxL (x) dx+O (σ) .

By Theorem 1.3,

S (x) =
∑
p≤x

1

p
= log log x+ b1 +O

(
1

log x

)
for x ≥ 2 . Let g (x) = x−σ . Again, by partial summation we have

∑
p

1

p1+σ
=
∑
p

g (p)

p
=

∫ ∞

1

g (x) dS (x) = −
∫ ∞

1

S (x) dg (x)
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= σ

∫ ∞

1

S (x) dx

x1+σ

= σ

∫ ∞

0

e−σxS (ex) dx.

Since

S (ex) = log x+ b1 +O

(
1

x

)
and

L (x) = log x+ γ +O

(
1

x

)
,

it follows that

L (x)− S (ex) = γ − b1 +O

(
1

x

)
= γ − b1 +O

(
1

x+ 1

)
for x ≥ 1 . We also have

L (x)− S (ex) = γ − b1 +O

(
1

x+ 1

)
for 0 ≤ x ≤ 1 . Therefore,

F (σ) = log ζ (1 + σ)−
∑
p

1

p1+σ

= σ

∫ ∞

0

e−σx (L (x)− S (ex)) dx+O (σ)

= σ

∫ ∞

0

e−σx

(
γ − b1 +O

(
1

x+ 1

))
dx+O (σ)

= (γ − b1)σ

∫ ∞

0

e−σxdx+O

(
σ

∫ ∞

0

e−σxdx

x+ 1

)
+O (σ)

= γ − b1 +O

(
σ

∫ ∞

0

e−σxdx

x+ 1

)
+O (σ) .

Since ∫ ∞

0

e−σxdx

x+ 1
<

∫ 1/σ

0

e−σxdx

x+ 1
+

∫ ∞

1/σ

e−σxdx

x

<

∫ 1/σ

0

dx

x+ 1
+

∫ ∞

1

e−ydy

y

= log

(
1

σ
+ 1

)
+O (1)

≪ log

(
1

σ
+ 1

)
It follows that
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F (σ) = γ − b1 +O

(
σ log

(
1

σ
+ 1

))
.

we have

b2 = lim
σ→0+

F (σ) = γ − b1.

Theorem 1.4 (Mertens’s formula)

♡

For x ≥ 2 ,

∏
p≤x

(
1− 1

p

)−1

= eγ log x+O (1)

where γ is Euler’s constant.

Proof We begin with two observations. First,

∑
p>x

∞∑
k=2

1

kpk
<
∑
p>x

1

p (p− 1)

<
∑
n>x

1

n (n− 1)

=
∑
n>x

(
1

n− 1
− 1

n

)

= O

(
1

x

)

= O

(
1

log x

)
.

Second, since exp (t) = 1 + O (t) for t in any bounded interval and O (1/ log x) is bounded for x ≥ 2 , it follows
that

exp

(
O

(
1

log x

))
= 1 +O

(
1

log x

)
.

Therefore,

log
∏
p≤x

(
1− 1

p

)−1

=
∑
p≤x

log

(
1− 1

p

)−1

=
∑
p≤x

∞∑
k=1

1

kpk

=
∑
p≤x

1

p
+
∑
p≤x

∞∑
k=2

1

kpk

= log log x+ b1 +O

(
1

log x

)
+ b2 −

∑
p>x

∞∑
k=2

1

kpk

= log log x+ γ +O

(
1

log x

)
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since b1 + b2 = γ by Lemma 1.2, and so

∏
p≤x

(
1− 1

p

)−1

= eγ log x exp

(
O

(
1

log x

))

= eγ log x

(
1 +O

(
1

log x

))

= eγ log x+O (1) .

This is Mertens’s formula.
The following result will be used in the proof of Chen’s theorem.

Theorem 1.5

♡

For any ε > 0 , there exists a number u1 = u1 (ε) such that

∏
u≤p<z

(
1− 1

p

)−1

< (1 + ε)
log z

log u

for any u1 ≤ u < z .

Proof Let γ be Euler’s constant, and choose δ > 0 such that

γ + δ

γ − δ
< 1 + ε

By Theorem 1.4, we have

∏
p<x

(
1− 1

p

)−1

∼ γ log x

and so there exists a number u1 such that

(γ − δ) log x <
∏
p<x

(
1− 1

p

)−1

< (γ + δ) log x

for all x ≥ u1 . Therefore, if u1 ≤ u < z , we have

∏
u≤p<z

(
1− 1

p

)−1

=

∏
p<z

(
1− 1

p

)−1

∏
p<u

(
1− 1

p

)−1

<
(γ + δ) log z

(γ − δ) log u

< (1 + ε)
log z

log u
.
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