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Chapter 1 Mertens’s theorems

In this section, we derive some important results about the distribution of prime numbers that were originally proved
by Mertens.

For any real number x > 1 we have
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Theorem 1.1 (Mertens)
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it follows from Theorem 1.1 that
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There exists a constant by > 0 such that
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We define the functions U (¢) and g (¢) by

Ut)=> u(n) :Zloip =logt+g(t).
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Then U (t) = 0 fort < 2 and g(t) = O (1) by Theorem 1.2. Therefore, the integral [ g (t)/ (t(log t)2) dt

converges absolutely, and
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Since f (t) is continuous and U (¢) is increasing, we can express the sum Y 1/p as a Riemann-Stieltjes integral.
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Note that U (¢) = 0 for ¢ < 2. By partial summation, we obtain
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From the Taylor series for log (1 — x) , we see that

N1 & 1 1
O<log<1> - = < = =
S R DT
It follows from the comparison test that the series
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Let by and by be the positive numbers defined by (1.1) and (1.2). Then
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where 7y is Euler’s constant.

Let 0 < o < 1. We define the function F' (o) by
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By the Weierstrass M-test, the last series converges uniformly for & > 0 and so represents a continuous function for
o > 0. Therefore,
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We shall find alternative representations for the functions log ¢ (1 + o) and Y p~'~7 . Since
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As we know
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By Theorem 1.3,

1 1
S (z) = Z; =loglogx 4+ by + O <logw)

p<z

forx > 2. Let g (x) = 27 . Again, by partial summation we have

1 9l [~ Y
pra_; D —/19($)d5’(f€)——/1S(w)dg(x)

P




:U/OOS(x)dac

1 xl+o’

= 0’/ e 7S (e”) dx.

0

Since

S(e®)=logx+ b1+ O (;)

and

L(m)zlogw—i—’y—l—O(i),

it follows that

L<x>—5<ew>:v—bl+o(1) :7—b1+0(1)

x z+1

for x > 1. We also have

for 0 < x < 1. Therefore,

= a/je‘” (L(z)—S(e%))dz+ O (o)

:U/Zoe_‘m <7—b1+O<I1+1>>d:E+O(U)

= (y—by) a/ooe—”dx +0 (a/meﬂdm) +0 (o)

0 o r+1

e 7 dx
—7—b1+0<a/ er1)—1—0(0).

0

Since

e %dy 1o e=oz gy ey
< +
0 X + 1 0 X + 1 1/0. X
Ve dg e Vdy
< +
o z+1 1Y

:10g<i+1>+0(1)

1
< log ( —|—1>
o

It follows that
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we have

Theorem 1.4 (Mertens’s formula)

Forxz > 2,
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where 7y is Euler’s constant.

Proof We begin with two observations. First,
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Second, since exp (t) = 1 + O (t) for ¢ in any bounded interval and O (1/log ) is bounded for x > 2, it follows
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since b; + ba = v by Lemma 1.2, and so
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This is Mertens’s formula.
The following result will be used in the proof of Chen’s theorem.

Theorem 1.5

For any € > 0, there exists a number uy = uy (g) such that
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Proof Let v be Euler’s constant, and choose 6 > 0 such that
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